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Introduction
Systems are everywhere in the real world and modelling such
systems accurately is a main goal of the mathematical sciences.
However, as it turns out, a minute change in initial conditions
of a system may lead to drastically different behaviour to what
is expected. This is known as chaos. Suppose the atmosphere
contained slightly less oxygen [1] , or the orbit of a planet was
slightly closer to the sun [2]. These perturbations can interact,
building upon each other which can eventually cause a com-
pletely different outcome, such as changing the habitability of
the planet and causing the creation or destruction of different
life forms.

The Logistic Map

Attempting to model a population
Say we wanted to model a population against time, one way we
could do this would be with a basic equation such as [3]:

xn+1 = kxn(1− xn)

where:
• xn is the population this year.
• xn+1 is the population next year.
• k is the reproductive rate.
• (1 − xn) to represent a theoretical maximum population that

would represent real life constraints (e.g. deaths).
Here the xn value is taken to be a proportion of the theoretical

maximum (i.e. a value between 0 and 1 ). This equation is called
the logistic map [4]. The parabolic nature of the map means it
may be regarded as a non-linear map.

Variations in k

Figure 1: The populations varying with different k values, with x0 = 0.3.

Figure 1 shows how a change in the reproductive rate k af-
fects the population of our model. In the first 3 cases in figure
1, the final population eventually settles on a particular value
m: when k < 1, the final population settles at 0, whilst when
1 < k < 2, the population rises before settling on to a popula-
tion of ≈ 0.41176. When 2 < k < 3, for example k = 2.5, the
initial populations follow a series of small oscillations decreas-
ing in amplitude eventually settling onto a value of ≈ 0.6000.
When k > 3 (k = 3.2 in this case), the final population oscil-
lates between 2 different values, for the moment.

The bifurcation diagram

Introducing the bifurcation diagram
As it is the final population(s) which we are interested in, we
may observe how the final population(s) vary by changing k val-
ues. We can observe the general pattern of a final population(s)
with regards to a specific k value using a bifurcation diagram.

Figure 2: Bifurcation diagram for 0 ≤ k ≤ 4

The y-axis represents the final population (or populations if
the value oscillates), whilst the x-axis represents the reproduc-
tion rate, k, of our model. Producing such diagrams for different
k leads to the following observations.

Figure 3: Bifurcation diagram for 3.4 ≤ k ≤ 4

Observations

Analysing the images generated in figure 2 and 3, the following
observations may be made.

Where 0 ≤ k ≤ 1, the final population would be 0. Increas-
ing the k value to be 1 < k < 3 would result in one final fixed
population. Subsequent k values follow period 2 behaviour (the
final population oscillates between 2 consistent values). By the
time k = 3.45, period 4 behaviour is demonstrated , with the the
period doubling to 8 at k = 3.544 and period 16 behaviour at
k = 3.5644. At k ≈ 3.57, chaos occurs: the final populations
have no distinct period. Other period behaviours are observed in
the logistic map: period 3 behaviour is observed where k = 3.83.

Chaos

Sensitive dependence on initial conditions

Figure 4: Visualisation of how changing x0 = 0.3 to x0 = 0.3000001 can
affect the subsequent xn+1 values significantly

Figure 4 shows how the logistic map has a sensitive depen-
dence on the initial conditions, as demonstrated by changing
xn = 0.3 to xn = 0.3000001. After n = 30, the behaviour of
each function begins to vary significantly; thus demonstrating
how a slight change in initial conditions may produce vastly dif-
ferent results. In essence, this is the definition of chaos.

Cobweb plots

Figure 5: Cobweb plots for varying k values

Plotting xn+1 against xn would give us an inverted parabola
where k affects the parabolic shape: points on the parabola that
intersect the line y = x are called fixed points. This may be

used to produce cobweb plots as shown in figure 5. The green
line represents the behaviour of subsequent populations. In a
nutshell, a reason for such chaotic behaviour may be determined
with regards to the gradient of the map at the fixed point.

Quantifying chaos: the Lyapunov exponent
We may quantify chaos using the Lyapunov exponent: the mean
of the logarithm of the absolute value of the gradient over an
infinite cycle.

ln |(fn)′(x1)| =
n∑

j=1

ln |f ′(xj)|

Figure 6: The Lyapunov exponent from 3.5 to 4 for 1100 iterations, retaining
the last 1000

Comparing figure 6 to figure 3, where the Lyapunov exponent
is greater than 0 corresponds to chaotic behaviour, below 0 cor-
responds to stability, and at 0 corresponds to bifurcations occur-
ring.

Examples of chaotic

Solar System
Our current mathematical models of the solar system [2] mean
we need to know the current state to an infinite precision (which
is impossible), hence we do not know what the state of the Solar
System will be in a billion years. Due to the chaotic nature, the
error in our measurement of the current state compared to the
true value will grow exponentially overtime, rendering predic-
tion or accurate simulation useless.

Concorde
Concorde’s wing design demonstrates where chaos may be use-
ful. One of the biggest engineering challenges of Concorde was
designing wings to allow the aircraft to fly at a range of speeds,
from slow flight for take off and landing, to cruising at twice the
speed of sound. The solution was to use chaotic turbulent air
flow caused by slow moving vorticies which were shed by the
large, seamless wing shape, elevons on the wing, and the steep
angle of attack; all allowing for the production of lift at low air-
speeds.

Conclusions
We conclude that there are severe limitations to mathematical
models. Even in the simplest deterministic nonlinear model, an
iterative discrete quadratic, chaotic behaviour exists. The key
idea is that unpredictability does not exist because of random-
ness or our lack of knowledge, but because systems are inher-
ently chaotic as a fundamental property.
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